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Abstract

Background: For women of reproductive age, a population-level red blood cell (RBC) folate 

concentration below the threshold 906 nmol/L or 400 ng/mL indicates folate insufficiency and 

suboptimal neural tube defect (NTD) prevention. A corresponding population plasma/serum folate 

concentration threshold for optimal NTD prevention has not been established.

Objective: The aim of this study was to examine the association between plasma and RBC folate 

concentrations and estimated a population plasma folate insufficiency threshold (pf-IT) 

corresponding to the RBC folate insufficiency threshold (RBCf-IT) of 906 nmol/L.

Methods: We analyzed data on women of reproductive age (n = 1673) who participated in a 

population-based, randomized folic acid supplementation trial in northern China. Of these women, 

565 women with anemia and/or vitamin B-12 deficiency were ineligible for folic acid intervention 

(nonintervention group); the other 1108 received folic acid supplementation for 6 mo (intervention 

group). We developed a Bayesian linear model to estimate the pf-IT corresponding to RBCf-IT by 

time from supplementation initiation, folic acid dosage, methyltetrahydrofolate reductase 

(MTHFR) genotype, body mass index (BMI), vitamin B-12 status, or anemia status.

Results: Using plasma and RBC folate concentrations of the intervention group, the estimated 

median pf-IT was 25.5 nmol/L (95% credible interval: 24.6, 26.4). The median pf-ITs were similar 

between the baseline and postsupplementation samples (25.7 compared with 25.2 nmol/L) but 

differed moderately (±3–4 nmol/L) by MTHFR genotype and BMI. Using the full population-

based baseline sample (intervention and nonintervention), the median pf-IT was higher for women 

with vitamin B-12 deficiency (34.6 nmol/L) and marginal deficiency (29.8 nmol/L) compared with 

the sufficient group (25.6 nmol/L).
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Conclusions: The relation between RBC and plasma folate concentrations was modified by 

BMI and genotype and substantially by low plasma vitamin B-12. This suggests that the threshold 

of 25.5 nmol/L for optimal NTD prevention may be appropriate in populations with similar 

characteristics, but it should not be used in vitamin B-12 insufficient populations. This trial was 

registered at NCT00207558.
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Introduction

Low folate status is associated with increased risk of adverse health outcomes, including 

megaloblastic anemia and neural tube defect (NTD)-affected pregnancies (1, 2). Folate is 

essential for DNA synthesis, cell growth and differentiation, as well as the formation and 

maturation of red blood cells (RBCs) (3, 4). Although essential throughout life, folate is 

particularly critical during early stages of human development. Low folate status in 

pregnancy has also been associated with other adverse health outcomes, including congenital 

heart defects, oral clefts, fetal growth restriction, low birth weight, and preterm delivery (1, 

2). Evidence from clinical trials and observational studies in multiple settings has shown that 

folic acid intake in the periconceptional period reduces the occurrence of NTD-affected 

pregnancies (5–7). To prevent folate-sensitive NTDs, women of reproductive age are 

encouraged to consume folate-rich foods and 400 μg of synthetic folic acid daily (8, 9). 

Successful folic acid fortification programs have been documented in several countries, 

including Canada, Costa Rica, Chile, South Africa, and the United States, resulting in a 31–

50% reduction in the prevalence of NTD-affected pregnancies, with the percentage reduction 

dependent on folic acid dosage, intake, and baseline NTD rates (10–15).

To promote optimal NTD risk reduction at the population level, WHO recently 

recommended that the population RBC folate concentrations should be above a threshold of 

906 nmol/L (400 ng/mL) in women of reproductive age (16). In contrast, the threshold for 

preventing megaloblastic anemia is much lower (i.e., 305 nmol/L) (17). The RBC folate 

insufficiency threshold (RBCf-IT) of 906 nmol/L per WHO guidance has been used in 

countries such as the United States (18) and Guatemala (19) to evaluate the impact of 

fortification programs for the prevention of NTDs. Many countries, however, do not have 

RBC folate concentration data available; instead, they have plasma or serum folate 

concentration data for their populations because these are more widely utilized due to lower 

cost and the easier process of obtaining them. Although RBC and plasma/serum folate are 

both associated with folic acid intake (20, 21), they result from different biologic processes 

and are not interchangeable. It is generally accepted that plasma/serum folate concentrations 

reflect very recent intake, whereas RBC folate concentrations reflect both the long-term 

average of intake over the life span of RBCs and folate stores in the liver (22). Although 

ideal, currently there are no studies that link plasma/serum folate concentrations before or at 

the time of conception with NTD risk (studies in the second trimester or later are 

problematic due to hemodilution in pregnancy). Our objectives were to examine the 

association between paired plasma and RBC folate concentrations and to estimate a 
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population plasma folate insufficiency threshold (pf-IT) corresponding to the RBCf-IT of 

906 nmol/L.

Methods

Population

We used data from a population-based, double-blind randomized trial of folic acid 

supplementation conducted from 2003 to 2005 in northern China. All participants provided 

informed consent, and the project was approved by the institutional review boards at both 

the US Centers for Disease Control and Prevention and Peking University Health Sciences 

Center, Beijing, People’s Republic of China. The study design, participant eligibility, blood 

collection procedure, and methods for biochemical measurements and 

methyltetrahydrofolate reductase (MTHFR) genotyping have been previously described (23, 

24). Briefly, 1673 women of reproductive age underwent baseline assessments of 

hematologic and vitamin status (Supplemental Figure 1). Of this group, 565 women with 

anemia and/or vitamin B-12 deficiency were ineligible for folic acid intervention. The other 

1108 women were asked to take folic acid supplements for 6 mo and were randomly 

assigned to dosages of 25 μg 4 times a day, 100 μg 1 time a day, 100 μg 4 times a day, 400 

μg 1 time a day, 4000 μg 1 time a day, or 4000 μg 1 time per week. Fasting blood samples of 

RBC folate, plasma folate, vitamin B-12, homocysteine, and hemoglobin were collected at 

baseline; months 1, 3, and 6 during the supplementation trial; and month 9, which was 3 mo 

postsupplementation. Plasma and RBC folate concentrations were measured by the Molloy 

method with microbiological assays (chloramphenicol-resistant strain and folic acid 

calibrator) (25). For our purpose, we used data at baseline and 6 mo after supplementation 

(month 6), the time points when plasma and RBC folate concentrations were at or 

approaching a steady state (24). Our primary analysis used the intervention group data at 

baseline (n = 1108) and month 6 (n=977).Our secondary analysis used data from the 

intervention (n = 1108) and nonintervention (n = 565) groups at baseline. All analyses 

combined the subgroups of 25 μg 4 times a day and 100 μg 1 time a day into the 100 μg/d 

group and the subgroups of 100 μg 4 times a day and 400 μg 1 time a day into the 400 μg/d 

group because previous studies of this trial showed that the subgroups with different 

schedules but same overall doses have similar dose–response relations (24).

The primary outcomes for the original trial were to assess the changes in plasma folate, RBC 

folate, and homocysteine due to different intakes of folic acid with secondary analysis of the 

impact of MTHFR genotypes, and these have been reported previously (23, 24). The current 

analysis takes advantage of the well-characterized population-based sample of paired RBC 

folate and plasma folate concentration data to assess the association between paired plasma 

and RBC folate concentrations and to estimate a population pf-IT corresponding to the 

RBCf-IT of 906 nmol/L between different groups. The baseline sample was population-

based and included healthy, anemic, and B-12–deficient individuals. Because anemic 

individuals were excluded from receiving the folic acid intervention and were referred to 

medical care, the 6-mo postintervention sample included only nonanemic or B-12–deficient 

individuals. Groups were stratified by age, body mass index (BMI, in kg/m2), and MTHFR 
genotype.
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Statistical analysis

Descriptive analysis.—We described the data used for modeling by calculating the 

baseline characteristics for age group (<25, 25 to <35, and ≥35 years), MTHFR 677 

genotypes (CC, CT, and TT), BMI (<25, 25 to <30, and ≥30), plasma folate, RBC folate, 

plasma hemoglobin, and plasma vitamin B-12. We used the natural logarithm of plasma and 

RBC folate concentrations in all analyses to normalize the distribution of folate 

concentrations, and back-transformed to calculate the geometric mean (GM). We calculated 

and compared these characteristics for the baseline data by intervention and nonintervention 

groups using chi-square tests or nonparametric Kruskal–Wallis tests. In addition, we used 

the intervention group data at baseline and month 6 and estimated the GM and the 2.5th and 

97.5th percentiles of plasma and RBC folate concentrations overall, by folic acid dosage 

groups, MTHFR 677 genotypes (CC, CT, and TT), and BMI subgroups. We used Pearson’s 

correlation coefficient (r) to assess correlations between plasma and RBC folate 

concentrations. Similarly, we used baseline data only and calculated the GM and 2.5th and 

97.5th percentiles as well as r of plasma and RBC folate concentrations by group 

(intervention compared with nonintervention), vitamin B-12 status (deficient <148 pmol/L, 

marginal deficiency 148–221 pmol/L, and sufficient >221 nmol/L) (26), and anemia status 

(hemoglobin <120 g/L compared with ≥120 g/L).

Bayesian linear model.—We modeled RBC folate concentration as a function of plasma 

folate concentration using a linear model within the Bayesian framework. We chose the 

Bayesian framework because of the flexibility, direct inferences through the posterior 

distribution for quantities of interest, and usability of all available information. Flexibility 

allows us to model RBC folate concentration as a function of plasma folate concentration 

and obtain the posterior for the plasma distribution that corresponds to the RBC folate 

concentration threshold. We are able to use all available information for RBC folate 

concentration, plasma folate concentration, and covariates of interest in model development 

and treat missing data as additional parameters to be estimated in the modeling process. We 

investigated several models to estimate the plasma folate concentration corresponding to 

RBC folate threshold. We set 906 nmol/L as the RBC folate concentration threshold for 

optimal NTD prevention based on the WHO recommendation and previous studies (15, 27).

We used data from baseline and month 6 for the intervention group models and baseline data 

for the combined nonintervention and intervention models. We estimated intervention group 

models overall and by 1) baseline and month 6, 2) supplementation group, 3) genotype, and 

4) BMI. In addition, we estimated an overall pf-IT using a multivariable model that 

controlled for age, MTHFR genotype, and BMI. We performed sensitivity analyses to 

evaluate the impact of missing information on genotypes and BMI in the multivariable 

models, using Bayesian methods to impute missing values.

To estimate the pf-IT for the combined nonintervention and intervention groups, we 

developed Bayesian linear models (BLMs) overall and by 1) intervention and 

nonintervention group, 2) vitamin B-12 status, and 3) anemia status. We also developed an 

adjusted BLM including age, MTHFR genotypes, BMI, vitamin B-12 status, and anemia 

status as covariates.
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We used the following standard procedure for all BLMs. Our estimation procedure consisted 

of computing the joint posterior probability distribution of all parameters using a Markov 

chain Monte Carlo computational approach. We used a burn-in of 10,000 samples, drew 

500,000 samples post burn-in, and thinned by retaining every 50th sample, which resulted in 

a sample of 10,000 for our parameter estimates. We used mildly informative priors of N(0, 

10) for all parameters. In addition, for our multivariable models, we estimated the 

parameters by removing missing data and using a full Bayesian approach by treating the 

missing data as additional parameters to be estimated jointly with our model parameters of 

interest. We assumed all missing data were missing at random. In addition, for all models 

that used baseline and 6-mo data, we treated the individual as a random effect to account for 

the correlation within a person. For each model, we summarized the 10,000 posterior 

samples of the estimated pf-IT that corresponds to the RBCf-IT of 906 nmol/L. In addition, 

when appropriate, we calculated and summarized the difference of the pf-IT estimates by 

subgroup. We report the medians and 95% credible intervals (CIs) of the posterior 

distributions of the estimated pf-ITs and differences in pf-ITs. A credible interval is 

Bayesian statistics and defines a plausible range of values, within which an unobserved 

parameter value falls with a particular probability. We estimated all models using SAS 

MCMC (version 9.4; SAS Institute).

Results

Descriptive analysis

Baseline characteristics of women in the intervention and nonintervention groups are 

presented in Table 1. Women in the intervention group were more likely to be in the age 

group <25 y (P = 0.03) and had higher plasma folate, RBC folate, hemoglobin, and vitamin 

B-12 concentrations than those in the nonintervention group (P < 0.001). MTHFR 677 
genotype TT was more prevalent in the nonintervention group (43.1% compared with 

35.1%), whereas CC and CT were more prevalent in the intervention group (P= 0.04).

The GM of plasma and RBC folate concentrations did not differ substantially by dosage 

groups at baseline but differed at month 6 (Supplemental Table 1). The correlation 

coefficient (r) for plasma and RBC folate concentrations increased in the intervention group 

from 0.46 at baseline to 0.67 at month 6 (Figure 1A, Supplemental Table 1). The increase in 

r after supplementation was observed in all dosage groups except the 4000 μg/wk group 

(Figure 1C, D, E and F, Supplemental Table 1), whereas the r in the 100 μg/d group 

remained the lowest compared to other dosage groups.

Among the intervention group, women with MTHFR 677 genotype TT had lower plasma 

and RBC folate concentrations at baseline and month 6 compared with the CC and CT 
groups (Supplemental Table 1). The increase in r between plasma and RBC folate 

concentrations after supplementation was observed in all genotype groups (Figure 2A, B, 

and C, Supplemental Table 1). At baseline or month 6, the r did not differ substantially 

between genotype groups. For BMI subgroups, at baseline and month 6, the obese women 

(BMI ≥30) had higher RBC folate and lower plasma folate concentrations than 

nonoverweight/nonobese women (BMI <25) (Figure 2D, E, and F, Supplemental Table 1). 
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The r was lower in the obese women than in the nonoverweight/nonobese women and 

remained low at month 6 (Figure 2D, E, and F, Supplemental Table 1).

We found the r between plasma and RBC folate concentrations to be lower in the 

nonintervention group (0.41) compared to the intervention group (0.46) (Figure 1A, B, 

Supplemental Table 2) and also lower in the anemic group (0.35) compared with the 

nonanemic group (0.48).

Plasma threshold analysis

When using data from the intervention group, the estimated median pf-IT was 25.5 nmol/L 

(95% CI: 24.6, 26.4) (Table 2, Figure 3). Results of the subgroup analyses for the 

intervention group are summarized in Table 2 and Supplemental Figure 2. The estimated 

median pf-IT at month 6 (25.2 nmol/L) was similar to baseline (25.7 nmol/L). The estimated 

median pf-IT for the 100 μg/d group (38.4 nmol/L) was higher than that of the other three 

dosage groups, whereas those in the other three dosage groups were closer to one another 

(400 μg/d: 24.4 nmol/L; 4000 μg/d, 22.0 nmol/L; and 4000 μg/wk, 25.6 nmol/L). The higher 

estimated median pf-IT in the 100 μg/d group was observed both at baseline and at month 6 

(Supplemental Table 3). For the 4000 μg/d group, a lower estimated median pf-IT was 

observed at month 6 (13.2 nmol/L) (Supplemental Table 3); however, when removing a few 

influential observations, the 6-mo estimated median pf-IT (19.5 nmol/L) was not 

substantially different from the baseline estimated median pf-IT(22.8nmol/L).

The estimated median pf-IT was higher for the TT group (26.3 nmol/L) than the CC and CT 
groups (CC: 23.2 nmol/L; CT: 25.1 nmol/L) (Table 2, Supplemental Figure 2). The 

estimated median pf-ITs were not different by genotype groups at month 6 alone 

(Supplemental Table 3). Among BMI subgroups, the estimated median pf-IT was lowest for 

the obese group (21.9 nmol/L), followed by the overweight group (23.3 nmol/L) and the 

nonoverweight/nonobese group (26.7 nmol/L) (Table 2, Supplemental Figure 2). When 

using only baseline or 6-mo data, the estimated median pf-IT for the obese group was ~5–6 

nmol/L lower than that for the non-overweight/non-obese group (Supplemental Table 3). 

Differently, the estimated median pf-IT for the overweight group was higher at baseline but 

lower at month 6 compared to that for the nonoverweight/nonobese group. When comparing 

the unadjusted and adjusted models, we did not observe meaningful differences in all the 

threshold values (Supplemental Table 4).

Using data from all women at baseline, the estimated median pf-IT was 27.2 nmol/L (95% 

CI: 24.6, 30.9) (Table 3). The estimated median pf-IT for the intervention group was lower 

than that for the nonintervention group (25.7 nmol/L compared with 32.5 nmol/L), with a 

difference of 6.7 nmol/L (95% CI: −0.6, 18.2) (Table 3, Supplemental Figure 3). The 

estimated median pf-IT was higher for vitamin B-12–deficient and marginal deficiency 

women (34.6 and 29.8 nmol/L; respectively) compared with vitamin B-12–sufficient women 

(25.6 nmol/L) (Table 3). The difference between vitamin B-12–deficient and – sufficient 

groups was 8.9 nmol/L (95% CI: 0.4, 22.9) (Table 3, Supplemental Figure 3). The estimated 

median pf-IT was also higher for the anemic group (28.5nmol/L) than for the nonanemic 

group (26.4 nmol/L), but the difference was small (2.1 nmol/L; 95% CI: −6.3, 23.9) (Table 
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3). When comparing the unadjusted and adjusted models, we did not observe meaningful 

differences in the threshold values (Supplemental Table 5).

Discussion

We observed a moderate positive correlation of plasma and RBC folate concentrations in 

nonpregnant women of reproductive age by using data from a population-based, randomized 

trial of folic acid supplementation in northern China. In this population, 21% were vitamin 

B-12 deficient and 15% were anemic. We also generated population pf-ITs corresponding to 

RBCf-IT for optimal NTD prevention. Among nonanemic, non-vitamin B-12–deficient 

women, the estimated median pf-IT corresponding to RBCf-IT of 906 nmol/L was 25.5 

nmol/L. The estimated median pf-IT did not change after supplementation. However, the 

estimated median pf-ITs in vitamin B-12–deficient or marginal deficiency women were 

higher than with that in vitamin B-12–sufficient women. Our results suggest that the 

threshold of 25.5 nmol/L may be inappropriate for populations with high prevalence of 

vitamin B-12 deficiency or marginal deficiency.

Association between plasma and RBC folate concentrations

We found a moderate linear relation between plasma and RBC folate concentrations at 

baseline (r = 0.46 in the intervention group and r = 0.41 in the nonintervention group). The 

correlations were not substantially different by MTHFR genotype or vitamin B-12 status, 

but they were lower in obese and anemic groups. We also found the correlation increased 

after folic acid intervention (r = 0.67), implying that the individual variation of blood folate 

concentrations in the population decreased after folic acid intervention (e.g., food 

fortification). Note that the correlations are lower before intervention compared to after the 

folic acid intervention due to higher variance in the same subjects at baseline and not due to 

a difference in the slope orconclusionsconclusions intercept of the association such that there 

is more scatter around the same line (Figure 1).Another way to demonstrate that the slope of 

the association is similar between the pre- and post-intervention data is by comparing the 

median plasma folate concentration that correlates with the 906 nmol/L RBC folate 

concentration, which is almost identical [baseline, 25.7 nmol/L (95% CI: 23.0, 29.7); 6-mo 

folic acid, 25.2 nmol/L (95% CI: 23.9, 26.5); Table 2], just with wider credible intervals at 

baseline that reflect the higher variance in the baseline data. It is not surprising to have less 

variance in crude r2 correlation at low concentrations when a small absolute change 

produces a larger percentage change and that variance decreases when the population is 

homogenized by 6 mo of folic acid supplementation and much higher concentrations, where 

the same absolute difference is a much smaller percentage change. Previous Irish studies 

with blood folate samples collected among pregnant women who attended the antenatal 

clinic showed the correlation coefficient of RBC and plasma folate to be 0.61–0.71 (28), 

which is consistent with the postsupplementation data. However, it is difficult to compare 

the reported correlation coefficients with our estimates due to difference in pregnancy status 

and lack of information on folic acid supplementation, baseline folate concentrations, and 

genetic or biologic characteristics.
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Population plasma folate concentration insufficiency threshold

In our study, for nonanemic, non-vitamin B-12–deficient women, the estimated median pf-

IT corresponding to RBCf-IT of 906 nmol/L for optimal NTD prevention (< 8 NTD per 

10,000 births) was 25.5 nmol/L. A previous nested case–control study of women in the 

second trimester found that the subpopulation with plasma folate concentration >15.9 

nmol/L was associated with a lower risk of NTDs (< 9 per 10,000 births) (29). Due to 

hemodilution of pregnancy, which leads to lower plasma/serum folate concentration in 

normal pregnancy (30), it may be inappropriate to compare this plasma concentration with 

the one derived from nonpregnant women in our study. The difference in plasma folate 

concentration thresholds might also be influenced by the limited number of participants in 

the previous study and by biological factors such as race/ethnicity or environmental factors 

such as different food sources between the two different populations.

Effect of folic acid supplementation.—This analysis finds that folate metabolism and 

possibly transportation into the cell change the plasma folate equivalent of the 906 nmol/L 

threshold (B-12, MTHFR, and BMI), whereas 6 mo of folic acid supplement in and of itself 

does not change the pf-IT (such that those whose RBC folate concentration is 906 nmol/L 

have similar plasma folate concentrations at baseline as those who have consumed folic acid 

supplements and have RBC folate concentrations of 906 nmol/L). When stratifying by folic 

acid dosage groups, the pf-IT for the 100 μg/d group was higher than those of the other three 

dose groups. However, the additional analysis on the 100 μg/d group revealed that the pf-ITs 

did not differ by baseline and 6 mo of supplementation, suggesting that factors other than 

supplementation affect the relation between plasma and RBC folate concentrations in this 

subgroup. Given that the women in the original trial were randomly allocated to each dose 

group and there was no difference in baseline characteristics between dose groups (24), it 

might be an unmeasured confounder that results in the difference in plasma threshold 

estimates for the 100 μg/d group. Because our model was intended to reflect true population 

variance of plasma and RBC folate concentrations, we retained the 100 μg/d group data in 

the final overall model.

Effect of MTHFR genotype.—The MTHFR genotype variation (667C>T transition) is a 

determinant of folate status in women of reproductive age (31). Studies have shown that the 

genetic variant TT was associated with lower plasma/serum and RBC folate concentrations 

(23) and increased risk of NTDs (32). Previous modeling showed that MTHFR genotype 

variation does not modify the relation of RBC folate concentration threshold and NTD risk 

in the population (33), although additional folate intake would be needed for a population 

with the MTHFR T alleles to achieve a specific RBC folate concentration. Genotype TT, 

which links to lower concentrations of RBC and plasma folate concentrations, had a higher 

pf-IT than CC and CT groups (trend TT > CT > CC). When further stratifying data of 

genotype subgroups by different time points, the trend of the pf-ITs among genotype 

subgroups was found at baseline but not after 6 mo of folic acid supplementation. Our 

findings suggest that the differences between RBC folate and plasma folate concentrations 

due to genotype are moderated after folic acid supplementation.
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Effect of BMI.—Our study revealed an inverse trend between BMI and pf-IT: higher BMI 

is associated with a lower plasma threshold. This association is consistent with results from 

previous studies among US women showing that higher BMI was associated with lower 

serum folate but higher RBC folate concentrations (34, 35). A possible explanation for this 

observation could be that the altered distribution of folate as body size increases leads to a 

change in the body pool of freely available plasma/serum folate and folate in the cell (36, 

37). Obesity is also thought to affect folate metabolism (e.g., higher cellular uptake of the 

developing erythrocytes) (38), but the effect has not yet been determined. In addition, a US 

study (35) found that the use of folic acid supplements modified the inverse association 

between serum folate concentration and BMI: lower serum folate concentrations were 

associated with higher BMI among supplement nonusers but not among users. However, in 

our study, the inverse association between BMI and pf-IT remained after 6 mo of 

supplementation. Further studies are needed to delineate the associations between BMI, folic 

acid intake, and the two different folate status indicators (plasma and RBC folate).

Effect of vitamin B-12.—We found that lower vitamin B-12 status is associated with 

much higher pf-IT. Vitamin B-12 is directly involved in folate metabolism and required for 

folate retention in developing RBC, thus leading to functional folate deficiency and impaired 

erythropoiesis (1). Vitamin B-12 serves as a coenzyme in methionine synthase reaction [i.e., 

the conversion of 5-methyl-tetrahydrofolate (5-methyl-THF) to THF]. Vitamin B12 

deficiency can lead to reduced methionine synthase reaction, causing 5-methyl-THF to 

accumulate in the “methyl trap” (39). The effect of vitamin B-12 status on the relation 

between RBC folate and plasma folate highlights the differences between the two folate 

biomarkers and suggests caution in using a pf-IT in the context of lower vitamin B-12 

intakes. Vitamin B-12 deficiency should be corrected because there are clinical 

consequences beyond those associated with folate deficiency (e.g., neurological damage). In 

populations with a high prevalence of vitamin B-12 deficiency and insufficiency, correction 

of both vitamin B-12 deficiency and low folate status could be considered and RBC folate, 

plasma/serum folate, and vitamin B-12 monitored.

Strengths and limitations

This study has several strengths. This was a large population-based study with multiple 

biomarkers available for each subject. There was high compliance with folic acid 

supplementation, allowing us to show the correlations and pf-IT estimates between different 

subgroups receiving different dosages. Furthermore, MTHFR genotype information was 

available, allowing us to examine if genotype affects plasma folate concentration thresholds.

One study limitation is that we used folic acid concentration measured after 6 mo of 

supplementation in the analysis. This assumes that blood folate, particularly RBC folate, has 

reached a steady state. Studies have shown that it takes ~6–12 mo for RBC to reach a steady 

state, whereas it takes less time for plasma/serum to do so (40–44). The timing to reach a 

steady state also depends on the dosage of folic acid supplementation (43–45). RBC folate 

concentrations in women who take high doses (e.g., >1 mg/d) may plateau earlier than those 

in lower dose groups. Our previous study, which used the same China data, showed that the 

plasma concentration plateaued at 3 mo but RBC concentration had not plateaued by 6 mo 
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(24). Because in the trial folic acid supplementation was withdrawn after 6 mo, we could not 

determine whether the RBC folate concentration increased after this period or whether it 

reached a plateau between 3 and 6 mo. However, an assumption of steady state may not be 

so important because we found no substantial difference in the pf-ITs between baseline and 

after 6 mo of supplementation.

This study is also limited in that this correlation is limited to the microbiological assay and 

is not generalizable to other assays. In addition, the folate measurements in this study were 

taken under fasting conditions, which limited our ability to assess the effect of fasting. Last, 

this study only included women of reproductive age in northern China, with a background of 

high (35.1%) prevalence of TT genotype (23). More studies using data from other 

populations in different settings will help determine if our findings of the association 

between plasma and RBC folate concentrations and the pf-ITs can be applied to other 

populations.

Implications

RBC and plasma folate concentrations, although highly correlated, are not identical 

biomarkers of folate status, and their relation is affected by BMI, MTHFR genotype, and 

especially vitamin B-12 status. Previous studies in various populations have consistently 

shown that as RBC folate concentration increases, NTD risk decreases; for example, a 4-fold 

increase in RBC concentration, from 300 nmol/L to 1200 nmol/L, was associated with up to 

a 10-fold decreased risk of NTDs (33). WHO has established that the RBC folate 

insufficiency threshold for optimal NTD prevention is 906 nmol/L, and this threshold 

(adjusted for folate assay method) helped Guatemala evaluate its fortification program. 

Fortification was found to be relatively effective at increasing blood folates in urban areas 

(~19% of the population under the RBCf-IT) but was not effective in reaching rural and 

indigenous populations (~ 81% under the RBCf-IT in Norte region) (19). The pf-IT could be 

used by programs to determine what percentage of their population is likely to be folate 

insufficient for optimal NTD prevention. High rates of plasma folate insufficiency would 

indicate a need to implement an appropriate folic acid fortification or supplementation 

program. Although RBC folate concentration distributions are still needed to predict NTD 

prevalence, use of a population plasma folate insufficiency threshold could help programs 

with existing plasma folate data plan and initiate fortification programs.

Conclusions

We estimated that the population-based median pf-IT corresponding to RBCf-IT of 906 

nmol/L is ~25.5 nmol/L. We observed no substantial change in estimated median pf-IT after 

folic acid supplementation, and only moderate changes by MTHFR genotype and BMI. The 

estimated median pf-IT among vitamin B-12–deficient women was much higher than that of 

vitamin B-12–sufficient women, suggesting the threshold may be inappropriate for 

populations with vitamin B-12 insufficiency or other characteristics different from those of 

our study population.
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FIGURE 1. 
Correlation plots between plasma and RBC concentrations at baseline (month 0) and after 6 

mo of supplementation. Plots show the natural log-transformed plasma and RBC folate 

concentrations for (A) the intervention group (baseline n = 1108, 6 mo n = 977), (B) the 

non-intervention group (n = 565), and different folic acid dosage groups (C: baseline n = 

368, 6 mo n = 330; D: baseline n = 371, 6 mo n = 332; E: baseline n = 183, 6 mo n = 162; F: 

baseline n = 186, 6 mo n = 153). The values of correlation coefficients (r) are shown in each 

panel. RBC, red blood cell
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FIGURE 2. 
Correlation plots between plasma and RBC concentrations at baseline (month 0) and after 6 

mo of supplementation. Plots show the natural log-transformed plasma and RBC folate 

concentrations for MTHFR 677 genotype groups (A: baseline n = 163, 6 mo n = 159; B: 

baseline n = 448, 6 mo = 434; C: baseline n = 330, 6 mo n = 361) and BMI groups (D: 

baseline n = 670, 6 mo n = 584; E: baseline n = 287, 6 mo n = 260; F: baseline n = 69, 6 mo 

n = 60). Data included only women who received the folic acid intervention. The estimated 

correlation coefficients (r) are shown in each panel. RBC, red blood cell.
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FIGURE 3. 
Estimated plasma folate concentration corresponding to the RBC folate concentration of 906 

nmol/L using data from the intervention group (includes baseline and 6 mo). The dashed line 

represents the median, and the values of the estimated median and 95% credible interval are 

shown. CI, Bayesian credible interval; RBC, red blood cell.
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TABLE 2

Estimated plasma folate concentrations corresponding to the red blood cell folate concentration of 906 nmol/L 

using data from the intervention group, stratified by subgroups
1

Median plasma folate
concentration in
nmol/L (95% CI)

Median difference
(95% CI)

Overall 25.5 (24.6, 26.4) —

Time

 Baseline 25.7 (23.0, 29.7) Reference

 Month 6 25.2 (23.9, 26.5) −0.5 (−4.7, 2.6)

Folic acid dosage

 100 μg/d 38.4 (33.3, 45.8) 13.9 (8.7, 21.5)

 400 μg/d 24.4 (23.1, 25.9) Reference

 4000 μg/d 22.0 (20.5, 23.6) ‒2.4 (‒4.4, ‒0.4)

 4000 μg/wk 25.6 (23.0, 28.8) 1.0 (‒1.8, 4.5)

MTHFR 677 genotype

 CC 23.2 (21.2, 25.5) Reference

 CT 25.1 (23.8, 26.6) 1.9 (−0.7, 4.4)

 TT 26.3 (24.6, 28.2) 3.1 (0.2, 5.9)

BMI, kg/m2

 <25 26.7 (25.5, 28.1) Reference

 25 to <30 23.3 (21.9, 25.0) −3.3 (−5.3, −1.4)

 ≥30 21.9 (19.0, 26.1) −4.5 (−8.0, −0.5)

1
Includes data from the intervention group at baseline and 6 mo (n = 2085). CI, Bayesian credible interval; MTHFR, methylenetetrahydrofolate 

reductase.
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TABLE 3

Estimated plasma folate concentrations corresponding to the red blood cell folate concentration of 906 nmol/L 

using data from all women at baseline, stratified by subgroups
1

Median plasma folate
concentration in
nmol/L (95% CI)

Median difference
(95% CI)

Overall 27.2 (24.6, 30.9) —

Subgroup

 Intervention 25.7 (23.0, 29.7) Reference

 Non-intervention 32.5 (26.4, 43.6) 6.7 (−0.6, 18.2)

Vitamin B-12, pmol/L

 <148 34.6 (27.6, 48.2) 8.9 (0.4, 22.9)

 148–221 29.8 (24.1, 40.8) 4.2 (−3.4, 15.5)

 >221 25.6 (22.3, 30.7) Reference

Hemoglobin, g/L

 120 28.5 (20.9, 50.1) 2.1 (−6.3, 23.9)

 ≥120 26.4 (23.8, 29.8) Reference

1
Includes data from the intervention and the non-intervention groups at baseline (n = 1673). CI, Bayesian credible interval.
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